SAGE
February 27, 2015

## Making a polar plot (describing the radiation pattern of an antenna)

 `````` 1 2 3 4 5 6 7 8 9 10 11 12 13 `````` ``````# A linear broadside array of short vertical dipoles # located along the z axis with 1/2 wavelength spacing var('r, theta') N = 7 normalized_element_pattern = sin(theta) array_factor = 1 / N * sin(N * pi / 2 * cos(theta)) / sin(pi / 2 * cos(theta)) array_plot = polar_plot(abs(array_factor), (theta, 0, pi), color='red', legend_label='Array') radiation_plot = polar_plot(abs(normalized_element_pattern * array_factor), (theta, 0, pi), color='blue', legend_label='Radiation') combined_plot = array_plot + radiation_plot combined_plot.xmin(-0.25) combined_plot.xmax(0.25) combined_plot.set_legend_options(loc=(0.5, 0.3)) show(combined_plot, figsize=(2, 5), aspect_ratio=1)``````
 `````` 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 `````` ``````# Repeat the antenna pattern example with the Pyplot interface import numpy import matplotlib.pyplot as plt path = '/Users/dev/Desktop/' N = float(7) theta = numpy.arange(0, numpy.pi, numpy.pi/100) def normalized_element_pattern(theta): return abs(numpy.sin(theta)) def array_factor(theta, N): return abs(float(1 / N) * numpy.sin(float(N * pi / 2) * numpy.cos(theta)) / numpy.sin(float(pi / 2) * numpy.cos(theta))) plt.figure(figsize=(6, 4)) plt.subplot(121, polar=True) plt.polar(theta, normalized_element_pattern(theta)) plt.title('Element factor') plt.subplot(122, polar=True) plt.polar(theta, array_factor(theta, N), color='red', label="Array factor") plt.polar(theta, array_factor(theta, N) * normalized_element_pattern(theta), label="Pattern", color='blue') plt.legend(loc='lower right', bbox_to_anchor = (1, 0)) plt.subplots_adjust(wspace=0.3) plt.savefig(os.path.join(path, 'example3b.png')) plt.close()``````

## Mortgage calculation with SAGE

• PMT: Payment
• PV: Present Value (loan’s principal, amount barrowed)
• r: monthly interest rate (compounded monthly)
• t: number of years of the loan
• m: 12 (compounding period)
• i: r/m=r/12 (intereset rate per compounding period)
• n: mt=12*t (loan’s term, number of monthly payments)

PMT(PV, i, n) = (PV*i)/(1-(1+i)^(-n))

PMT(PV, r, t) = (PVr/12)/(1-(1+r/12)^(-12t))

or with building functions on top of functions

PMT1(PV, r, t) = PMT(PV, i=r/12, n=12*t)

Example: 200,000 USD for a 30-year mortgage at 6.5% compounded monthly PMT(200000, 0.065, 30)

## Compounded interest calculation with SAGE

Suppose you deposit \$5000 in an account that earns 4.5% compounded monthly. You are curious when your total will reach \$ 7000. Using the formula A = P(1+i)n, where P is the principal, A is the amount at the end, i is the interest rate per month, and n is the number of compounding periods (number of months), we have

 ``````1 2 3 4 5 6 `````` ``````7000 = 5000(1+0.045/12)^n 1.4=(1+0.0045/12)^n log 1.4 = log (1+0.0045/12)^n log 1.4 = n log (1+0.0045/12) SAGE: n = log(1.4)/log(1+0.045/12)``````